Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity.
نویسندگان
چکیده
A role for the rectum in the ionoregulatory homeostasis of larval Chironomus riparius was revealed by rearing animals in different saline environments and examining: (1) the spatial distribution and activity of keystone ionomotive enzymes Na(+)-K(+)-ATPase (NKA) and V-type H(+)-ATPase (VA) in the alimentary canal, and (2) rectal K(+) transport with the scanning ion-selective electrode technique (SIET). NKA and VA activity were measured in four distinct regions of the alimentary canal as follows: the combined foregut and anterior midgut, the posterior midgut, the Malpighian tubules and the hindgut. Both enzymes exhibited 10-20 times greater activity in the hindgut relative to all other areas. When larvae were reared in either ion-poor water (IPW) or freshwater (FW), no significant difference in hindgut enzyme activity was observed. However, in larvae reared in brackish water (BW), NKA and VA activity in the hindgut significantly decreased. Immunolocalization of NKA and VA in the hindgut revealed that the bulk of protein was located in the rectum. Therefore, K(+) transport across the rectum was examined using SIET. Measurement of K(+) flux along the rectum revealed a net K(+) reabsorption that was reduced fourfold in BW-reared larvae versus larvae reared in FW or IPW. Inhibition of NKA with ouabain, VA with bafilomycin and K(+) channels with charybdotoxin diminished rectal K(+) reabsorption in FW- and IPW-reared larvae, but not BW-reared larvae. Data suggest that the rectum of C. riparius plays an important role in allowing these larvae to cope with dilute as well as salinated environmental conditions.
منابع مشابه
Allatostatin A-like immunoreactivity in the nervous system and gut of the larval midge Chironomus riparius: modulation of hindgut motility, rectal K+ transport and implications for exposure to salinity.
Evidence for the presence of allatostatin (AST) A-like neuropeptides in the larval midge Chironomus riparius is reported. Immunohistochemical studies on the nervous system and gut revealed the presence of AST A-like immunoreactive (AST-IR) cells and processes. The nerve cord contained AST-IR processes that originated from cells in the brain and travelled the length of nerve cord to the terminal...
متن کاملOccludin and hydromineral balance in Xenopus laevis.
To investigate the response of the tight junction (TJ) protein occludin to environmental change in an anuran amphibian, we examined occludin tissue distribution, immunolocalization and alterations in mRNA expression in African clawed frogs (Xenopus laevis) acclimated to brackish water (BW) conditions (from freshwater to 2 per thousand, 5 per thousand or 10 per thousand salt water). Occludin mRN...
متن کاملEcdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles
Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during th...
متن کاملMicro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae).
The distribution and speciation of arsenic (As) were analyzed in individuals of various life stages of a midge, Chironomus riparius, and the mosquito Culex tarsalis exposed to 1000 μg/l arsenate. X-ray absorption spectroscopy (XAS) revealed that C. riparius larvae accumulate As in their midgut, with inorganic arsenate [As(V)] being the predominant form, followed by arsenite [As(III)] and an As-...
متن کاملToxicity of fullerene (C60) to sediment-dwelling invertebrate Chironomus riparius larvae.
An environmentally realistic method to test fullerene (C(60) ) toxicity to the benthic organism Chironomus riparius was created by allowing suspended fullerenes to settle down, making a layer on top of the sediment. To test the hypothesis that higher food concentrations will reduce toxic responses, two food concentrations were tested (0.5 and 0.8% Urtica sp.) in sediment containing fullerene ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 19 شماره
صفحات -
تاریخ انتشار 2013